Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
2.
Clin Pharmacokinet ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530588

RESUMO

BACKGROUND AND OBJECTIVE: The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS: A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS: The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS: The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.

6.
J Pharm Sci ; 113(1): 22-32, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924975

RESUMO

Historically, vaccine development and dose optimization have followed mostly empirical approaches without clinical pharmacology and model-informed approaches playing a major role, in contrast to conventional drug development. This is attributed to the complex cascade of immunobiological mechanisms associated with vaccines and a lack of quantitative frameworks for extracting dose-exposure-efficacy-toxicity relationships. However, the Covid-19 pandemic highlighted the lack of sufficient immunogenicity due to suboptimal vaccine dosing regimens and the need for well-designed, model-informed clinical trials which enhance the probability of selection of optimal vaccine dosing regimens. In this perspective, we attempt to develop a quantitative clinical pharmacology-based approach that integrates vaccine dose-efficacy-toxicity across various stages of vaccine development into a unified framework that we term as model-informed vaccine dose-optimization and development (MIVD). We highlight scenarios where the adoption of MIVD approaches may have a strategic advantage compared to conventional practices for vaccines.


Assuntos
Farmacologia Clínica , Vacinas , Humanos , Pandemias , Desenvolvimento de Medicamentos , Desenvolvimento de Vacinas , Modelos Biológicos , Relação Dose-Resposta a Droga
7.
Br J Clin Pharmacol ; 90(2): 463-474, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37817504

RESUMO

AIMS: Bedaquiline, pretomanid and linezolid (BPaL) combination treatment against Mycobacterium tuberculosis is promising, yet safety and adherence concerns exist that motivate exploration of alternative dosing regimens. We developed a mechanistic modelling framework to compare the efficacy of the current and alternative BPaL treatment strategies. METHODS: Pharmacodynamic models for each drug in the BPaL combination treatment were developed using in vitro time-kill data. These models were combined with pharmacokinetic models, incorporating body weight, lesion volume, site-of-action distribution, bacterial susceptibility and pharmacodynamic interactions to assemble the framework. The model was qualified by comparing the simulations against the observed clinical data. Simulations were performed evaluating bedaquiline and linezolid approved (bedaquiline 400 mg once daily [QD] for 14 days followed by 200 mg three times a week, linezolid 1200 mg QD) and alternative dosing regimens (bedaquiline 200 mg QD, linezolid 600 mg QD). RESULTS: The framework adequately described the observed antibacterial activity data in patients following monotherapy for each drug and approved BPaL dosing. The simulations suggested a minor difference in median time to colony forming unit (CFU)-clearance state with the bedaquiline alternative compared to the approved dosing and the linezolid alternative compared to the approved dosing. Median time to non-replicating-clearance state was predicted to be 15 days from the CFU-clearance state. CONCLUSIONS: The model-based simulations suggested that comparable efficacy can be achieved using alternative bedaquiline and linezolid dosing, which may improve safety and adherence in drug-resistant tuberculosis patients. The framework can be utilized to evaluate treatment optimization approaches, including dosing regimen and duration of treatment predictions to eradicate both replicating- and non-replicating bacteria from lung and lesions.


Assuntos
Antituberculosos , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Linezolida/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Diarilquinolinas/efeitos adversos
10.
Sci Rep ; 13(1): 14342, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658103

RESUMO

Misfolded proteins in Alzheimer's disease and Parkinson's disease follow a well-defined connectomics-based spatial progression. Several anti-tau and anti-alpha synuclein (aSyn) antibodies have failed to provide clinical benefit in clinical trials despite substantial target engagement in the experimentally accessible cerebrospinal fluid (CSF). The proposed mechanism of action is reducing neuronal uptake of oligomeric protein from the synaptic cleft. We built a quantitative systems pharmacology (QSP) model to quantitatively simulate intrasynaptic secretion, diffusion and antibody capture in the synaptic cleft, postsynaptic membrane binding and internalization of monomeric and oligomeric tau and aSyn proteins. Integration with a physiologically based pharmacokinetic (PBPK) model allowed us to simulate clinical trials of anti-tau antibodies gosuranemab, tilavonemab, semorinemab, and anti-aSyn antibodies cinpanemab and prasineuzumab. Maximal target engagement for monomeric tau was simulated as 45% (semorinemab) to 99% (gosuranemab) in CSF, 30% to 99% in ISF but only 1% to 3% in the synaptic cleft, leading to a reduction of less than 1% in uptake of oligomeric tau. Simulations for prasineuzumab and cinpanemab suggest target engagement of free monomeric aSyn of only 6-8% in CSF, 4-6% and 1-2% in the ISF and synaptic cleft, while maximal target engagement of aggregated aSyn was predicted to reach 99% and 80% in the synaptic cleft with similar effects on neuronal uptake. The study generates optimal values of selectivity, sensitivity and PK profiles for antibodies. The study identifies a gradient of decreasing target engagement from CSF to the synaptic cleft as a key driver of efficacy, quantitatively identifies various improvements for drug design and emphasizes the need for QSP modelling to support the development of tau and aSyn antibodies.


Assuntos
Farmacologia em Rede , Doença de Parkinson , Humanos , Anticorpos Monoclonais , Transporte Biológico , Difusão , Doença de Parkinson/tratamento farmacológico
11.
Clin Pharmacol Ther ; 114(3): 493-496, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37594205
12.
Artigo em Inglês | MEDLINE | ID: mdl-37505397

RESUMO

Successful clinical development of new therapeutic interventions is notoriously difficult, especially in neurodegenerative diseases, where predictive biomarkers are scarce and functional improvement is often based on patient's perception, captured by structured interviews. As a consequence, mechanistic modeling of the processes relevant to therapeutic interventions in CNS disorders has been lagging behind other disease indications, probably because of the perceived complexity of the brain. However in this report, we develop the argument that a combination of Computational Neurosciences and Quantitative Systems Pharmacology (QSP) modeling of molecular pathways is a powerful simulation tool to enhance the probability of successful drug development for neurodegenerative diseases. Computational Neurosciences aims to predict action potential dynamics and neuronal circuit activation that are ultimately linked to behavioral changes and clinically relevant functional outcomes. These processes can not only be affected by the disease state, but also by common genotype variants on neurotransmitter-related proteins and the psycho-active medications often prescribed in these patient populations. Quantitative Systems Pharmacology (QSP) modeling of molecular pathways allows to simulate key pathological drivers of dementia, such as protein aggregation and neuroinflammatory responses. They often impact neurotransmitter homeostasis and voltage-gated ion-channels or lead to mitochondrial dysfunction, ultimately leading to changes in action potential dynamics and clinical readouts. Combining these two modeling approaches can lead to better actionable understanding of the many non-linear pharmacodynamic processes active in the human diseased brain. Practical applications include a rational selection of the optimal doses in combination therapies, identification of subjects more likely to respond to treatment, a more balanced stratification of treatment arms in terms of comedications, disease status and common genotype variants and re-analysis of small clinical trials to uncover a possible clinical signal. Ultimately this will lead to a higher success rate of bringing new therapeutics to the right patient populations.

13.
CPT Pharmacometrics Syst Pharmacol ; 12(7): 889-903, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37452454

RESUMO

Typical Quantitative Systems Pharmacology (QSP) workflows involve discussion of biology, supported by graphical diagrams, followed by construction of large Ordinary Differential Equation models. QSP Designer facilitates this process by providing enhanced graphical notation, which enables hierarchical presentation with modules and handling of combinatorial complexity with diagram node arrays. Whereas the software includes a simulation engine, a major feature is full model code generation in MATLAB, R, C, and Julia to support multiple modeling communities.


Assuntos
Farmacologia em Rede , Farmacologia , Humanos , Modelos Biológicos , Software , Simulação por Computador , Idioma
16.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111660

RESUMO

Early prediction, quantification and translation of cardiovascular hemodynamic drug effects is essential in pre-clinical drug development. In this study, a novel hemodynamic cardiovascular systems (CVS) model was developed to support these goals. The model consisted of distinct system- and drug-specific parameter, and uses data for heart rate (HR), cardiac output (CO), and mean atrial pressure (MAP) to infer drug mode-of-action (MoA). To support further application of this model in drug development, we conducted a systematic analysis of the estimation performance of the CVS model to infer drug- and system-specific parameters. Specifically, we focused on the impact on model estimation performance when considering differences in available readouts and the impact of study design choices. To this end, a practical identifiability analysis was performed, evaluating model estimation performance for different combinations of hemodynamic endpoints, drug effect sizes, and study design characteristics. The practical identifiability analysis showed that MoA of drug effect could be identified for different drug effect magnitudes and both system- and drug-specific parameters can be estimated precisely with minimal bias. Study designs which exclude measurement of CO or use a reduced measurement duration still allow the identification and quantification of MoA with acceptable performance. In conclusion, the CVS model can be used to support the design and inference of MoA in pre-clinical CVS experiments, with a future potential for applying the uniquely identifiable systems parameters to support inter-species scaling.

17.
Pharmaceutics ; 15(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36986779

RESUMO

Despite the numerous therapeutic options to treat bleeding or thrombosis, a comprehensive quantitative mechanistic understanding of the effects of these and potential novel therapies is lacking. Recently, the quality of quantitative systems pharmacology (QSP) models of the coagulation cascade has improved, simulating the interactions between proteases, cofactors, regulators, fibrin, and therapeutic responses under different clinical scenarios. We aim to review the literature on QSP models to assess the unique capabilities and reusability of these models. We systematically searched the literature and BioModels database reviewing systems biology (SB) and QSP models. The purpose and scope of most of these models are redundant with only two SB models serving as the basis for QSP models. Primarily three QSP models have a comprehensive scope and are systematically linked between SB and more recent QSP models. The biological scope of recent QSP models has expanded to enable simulations of previously unexplainable clotting events and the drug effects for treating bleeding or thrombosis. Overall, the field of coagulation appears to suffer from unclear connections between models and irreproducible code as previously reported. The reusability of future QSP models can improve by adopting model equations from validated QSP models, clearly documenting the purpose and modifications, and sharing reproducible code. The capabilities of future QSP models can improve from more rigorous validation by capturing a broader range of responses to therapies from individual patient measurements and integrating blood flow and platelet dynamics to closely represent in vivo bleeding or thrombosis risk.

18.
Clin Pharmacol Ther ; 113(4): 757-759, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36919996
20.
Clin Pharmacokinet ; 62(3): 519-532, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802057

RESUMO

BACKGROUND: Site-of-action concentrations for bedaquiline and pretomanid from tuberculosis patients are unavailable. The objective of this work was to predict bedaquiline and pretomanid site-of-action exposures using a translational minimal physiologically based pharmacokinetic (mPBPK) approach to understand the probability of target attainment (PTA). METHODS: A general translational mPBPK framework for the prediction of lung and lung lesion exposure was developed and validated using pyrazinamide site-of-action data from mice and humans. We then implemented the framework for bedaquiline and pretomanid. Simulations were conducted to predict site-of-action exposures following standard bedaquiline and pretomanid, and bedaquiline once-daily dosing. Probabilities of average concentrations within lesions and lungs greater than the minimum bactericidal concentration for non-replicating (MBCNR) and replicating (MBCR) bacteria were calculated. Effects of patient-specific differences on target attainment were evaluated. RESULTS: The translational modeling approach was successful in predicting pyrazinamide lung concentrations from mice to patients. We predicted that 94% and 53% of patients would attain bedaquiline average daily PK exposure within lesions (Cavg-lesion) > MBCNR during the extensive phase of bedaquiline standard (2 weeks) and once-daily (8 weeks) dosing, respectively. Less than 5% of patients were predicted to achieve Cavg-lesion > MBCNR during the continuation phase of bedaquiline or pretomanid treatment, and more than 80% of patients were predicted to achieve Cavg-lung >MBCR for all simulated dosing regimens of bedaquiline and pretomanid. CONCLUSIONS: The translational mPBPK model predicted that the standard bedaquiline continuation phase and standard pretomanid dosing may not achieve optimal exposures to eradicate non-replicating bacteria in most patients.


Assuntos
Antituberculosos , Nitroimidazóis , Tuberculose , Animais , Humanos , Camundongos , Antituberculosos/uso terapêutico , Pulmão , Nitroimidazóis/farmacologia , Pirazinamida , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...